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ABSTRACT: Polyurethane/polyacrylonitrile semi-inter-
penetrating polymer network containing varying weight per-
cent of guar gum were prepared. The resulting composites
were subjected to biodegradation with the help of specific
fungi Aspergillus niger. The composite before and after biode-
gradationwere subjected to wide angle X-ray scattering stud-
ies. The nanocrystallite regions, area, and size are determined

from X-ray data using three different asymmetric column
length functions. A comparison of these parameters does
explain the nature of biodegradation at microlevel. � 2008
Wiley Periodicals, Inc. J Appl Polym Sci 108: 2762–2771, 2008
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INTRODUCTION

Ever since the development of polymeric material
cellophane, from cellulose, exploitation of naturally
occurring polymers like polysaccharides, proteins,
polyesters, etc., is in progress. Among the naturally
occurring polymers, starch has been extensively
used along with synthetic polymers as biodegradable
polymer composites or blends.1–8 There were efforts
to use chitosan-based polymers as biodegradable
polymer.9–13 The use of wood and plant-derived fill-
ers by the thermoplastic industry has been grow-
ing.14,15 Extensive literature survey revealed that
semi-interpenetrating polymer networks (SIPN)
derived from castor oil-based polyurethane (PU) and
derivatives of natural polymers, such as nitro-
cellulose,16 nitrokonjak glucomannan,17 and benzyl
konjak glucomannan18,19 were studied. Studies on
guar gum (GG)-filled polyurethane/polyacrylonitrile
(PU/PAN) SIPNs have not received much attention.
GG is a high molecular mass hydrocolloidal polysac-
charide belonging to the family Leguminosae, com-
posed of galactan and mannan units combined
through glycoside linkages that may be described
chemically as galactomannan.

It is essential to know the degradation behavior of
composites and its effect on the mechanical and
structural properties. Many researchers studied the
behaviour of degraded polymer composites and
found that the degradation reactions occur predomi-
nantly in the amorphous region and are controlled
by the diffusion of oxygen in this region,20 while
chain scission occurs in the amorphous phase of the
polymer.21 There are several publications on com-
posite matrix structure investigation by DSC and mi-
croscopy.22–25 However, only a few attempts have
been made to investigate the nanocrystallite regions
of these polymers through the use of X-ray scatter-
ing.26–29 The characterization of polymer composites
by wide angle X-ray scattering (WAXS) for single-
walled carbon nanotubes (SWCN) filled PAN was
reported by Sreekumar et al.28 They noticed the bet-
ter interaction between PAN and SWCN, that lead
to enhanced tensile modulus. Similarly, Seferisi
et al.29 studied carbon fiber reinforced polyethylene
terephthalate (PET) and polyether ether ketone
(PEEK) for degree of crystallinity and orientation of
carbon fibers. There are no reported studies on GG-
filled PU/PAN SIPN. In this work, the naturally
occurring GG in different weight percent namely, 5,
10, and 30% by weight were filled into PU/PAN
(50/50) SIPN by in situ polymerization. The degra-
dation by fungi Aspergillus niger has been reported.
The GG-filled PU/PAN IPN composites before and
after degradation were characterized by WAXS
studies.
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EXPERIMENTAL

Materials

Polyethylene glycol-400 (PEG) (M/s. Ranbaxy Labo-
ratories, India), benzoyl peroxide (Aldrich, St. Louis,
MO), and 4,40-diphenyl methane diisocyanate (MDI)
(Merck, Whitehouse Station, NJ) were used as such.
Acrylonitrile (SD Fine Chem., Boisor, India) monomer
was freed from stabilizer prior to use. GG (Shree
Vinayaka Corporation, Jodhpur, India) was dried
under vacuum before it is being used. The stains of As-
pergillus niger was supplied by Green guard Biotech,
Bangalore.

Preparation of samples

A mole of PEG-400 was made to react with 1.5 moles
of 4,40-diphenyl methane diisocyanate (MDI) in the
presence of 0.05 wt % of new catalyst to obtain PU
prepolymer.30 The 50% by weight of acrylonitrile
monomer with 0.5% of benzoyl peroxide and 5, 10
and 30 wt % of GG were added into the pre PU mix-
ture. The reaction mixture was stirred thoroughly at
room temperature for 30 min and then poured into a
clean glass mould sprayed with releasing agent. The
mould was kept in a closed chamber at room tem-
perature for 12 h for PU polymerization. The tem-
perature of the mould was then slowly raised to
808C and allowed for 12 h to polymerize acrylonitrile
by free radical sequential polymerization.31,32 The
resulting opaque golden yellow to light brown PU/
PAN/GG composites were cooled slowly and taken
out of the mould.

Biodegradation studies

About 1 g PU/PAN/GG composites containing dif-
ferent weight ratios of GG was taken in Erlenmeyer
flask with 50 mL of potato-dextrose broth (PDB).
This mixture was sterilized in an autoclave at 1208C
for 40 min. The sterilized composite-PDB mixtures
were inoculated with 2 mL of Aspergillus niger (AN)
spore suspension. The flasks were placed on a rotary
shaker at room temperature (258C) in dark for
30 days. The samples were sterilized, dried, and
characterized by WAXS.

Wide angle X-ray scattering

X-ray powder pattern of GG-filled PU/PAN (50/50)
SIPN were recorded on Philips PW 1140 diffractome-
ter of Bragg-Branto Geometry (fine focus setting)
with germanium filtered monochromatic radiation of
Cu Ka (k 5 0.1542 nm) for 2y range 3–608 in steps of
0.038,by employing a curved position sensitive detec-
tor (CPSD) in the transmission mode. These patterns
were indexed using TREOR procedure.

Microstructural parameters crystal size (<N>) and
lattice strain (g in %) are usually determined by
employing Fourier method reported elsewhere.33–35

The intensity of a profile in the direction joining the
origin to the center of the reflection can be expanded
in terms of Fourier cosine series;

IðsÞ ¼
X‘
n¼�‘

AðnÞ cosf2pndðs� s0Þg (1)

where, the coefficients of the harmonics A(n) are
functions of the size of the crystallite and the disor-
der of the lattice. Here, s is sin (y)/(k), s0 is the value
of s at peak of a profile, n is the harmonic order of
the coefficient, and d is the lattice spacing. The Fou-
rier coefficients can be expressed as;

AðnÞ ¼ AsðnÞAdðnÞ (2)

For a paracrystalline material, Ad(n) can be obtained,
with Gaussian strain distribution;35,36

AdðnÞ ¼ expð�2p2 m2ng2Þ (3)

Here, ‘‘m’’ is the order of the reflection and g 5 (Dd/
d) is the lattice strain. Normally one also defines
mean square strain <e2> which is given by g2/n.
This mean square strain is dependent on n, whereas
g is not.37,38 For a probability distribution of column
lengths P(i), we have;

AsðnÞ ¼ 1� nd

D
� d

D

Z n

0

iPðnÞdi� n

Z n

0

PðiÞdi
� �

(4)

where D 5 <N>dhkl is the crystallite size and ‘‘i’’ is
the number of unit cells in a column. In the presence
of two orders of reflections from the same set of
Bragg planes, Warren and Averbach33 have given a
method of obtaining the crystal size (<N>) and lat-
tice strain (g in %). But in polymer it is very rare to
find multiple reflections. So, to obtain the finer
details of microstructure, we approximate the size
profiles by simple analytical function for P(i) by
retaining only the asymmetric functions. Another
advantage of this method is that the distribution
function is not the same along different directions.
Whereas, a single crystal size distribution function is
used for the whole pattern fitting, which we feel,
may be inadequate to describe polymer diffraction
patterns.37–39 Here, it is emphasized that the Fourier
method of profile analysis (single order method used
here) is quite reliable one according to the recent
survey and results of Round Robin test conducted
by IUCr.40 In fact for refinement, we have also
included the effect of background by introducing a
parameter41 [see for details regarding the effect of
background on the microcrystalline parameters].
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The exponential distribution

It is assumed that there are no columns containing
fewer than p unit cells and those with more decay
exponentially. Thus, we have;42,43

AsðnÞ ¼ Að0Þð1� n= < N >Þ; if n � p
Að0Þfexp½�aðn� pÞ�g=ðaNÞ; if n � p

�
(5)

Here, ‘‘a’’ is the width of the distribution function,
‘‘i’’ is the number of unit cells in a column, ‘‘n’’ is
the harmonic number, ‘‘p’’ is the smallest number of
unit cells in a column, and <N> is the number of
unit cells counted in a direction perpendicular to the
(hkl) Bragg plane.

The Lognormal distribution

The Lognormal distribution function is;37,43

AsðnÞ ¼ m3 exp½ð9=4Þð21=2rÞ2
3

3 erfc
logðjnj=mÞ

21=2r
� 3

2
21=2r

� �

�m2 expð21=2rÞ2
2

jnjerfc logðjnj=mÞ
21=2r

� 21=2r

� �

þ jnj3
6

erfc
logðjnj=mÞ

21=2r

� �
ð6Þ

where r is the variance and m is the median of the
distribution function.

Reinhold distribution

With the exponential distribution function, P(i) rises
discontinuously at p, from zero to its maximum
value. In contrast, the Reinhold function allows a
continuous change;43

AsðnÞ

¼ Að0Þð1� n= <N >Þ; if n� p

½Að0Þðn� pþ 2=bÞ=N�fexp½�bðn� pÞ�g; if n� p

�

(7)

b ¼ 2=ðN � PÞ (8)

where b is the width of the distribution which has
been varied to fit the experimental results with p as
the smallest number of unit cells in a column,37,42 N
is the number of unit cells counted in a direction
perpendicular to the (hkl) Bragg plane; d, the spac-
ing of the (hkl) planes; k, the wavelength of X-rays
used; i, the number of unit cell in a column; n, the
harmonic number; and Ds is the surface weighted
nanocrystal size (<N>dhkl).

All the distribution functions were put to test in
order to find out the most suitable crystal size distri-
bution function for the profile analysis of the X-ray
diffraction. The procedure adopted for the computa-
tion of the parameters is as follows. Initial values of
g and <N> were obtained using Nandi et al.44 Sub-
stituting these values in the equations mentioned
earlier in the text, gives the corresponding values for
the width of distribution. These are only rough esti-
mates, so the refinement procedure must be suffi-
ciently robust to start with such values. Here, we
compute;

D2 ¼ ½Ical � ðIexp þ BGÞ�2=npt (9)

where BG parameter represents the error in the
background estimation, npt is the number of data
points in a profile, Ical is the intensity calculated
using eqs. (1)–(9), and Iexp is the experimentally
measured intensity. The values of D were divided by
half the maximum value of intensity so that it is
expressed relative to the mean value of intensities,
and then minimized. For refinement against inten-
sities, the multidimensional minimization algorithm
of the SIMPLEX method was used.41

RESULTS AND DISCUSSION

We have reported45 the mechanical behavior of GG-
filled PU/PAN composites before and after biode-
gradation. Tensile behavior was found to be in the
order; 0 < 5 < 10 > 30 before biodegradation,
whereas after degradation it was found to decrease
drastically with the increase in GG.

WAXS before biodegradation

The X-ray intensity profiles for selected GG-filled
PU/PAN composites are shown in Figure 1. The
reflection maxima with the corresponding spacing
(d) are listed in Table I. As shown in Figure 1, all the
samples showed two convoluted diffuse scattering
reflection in the 2y range of 3–608; the first reflection
is broad with very high intensity in the 2y range
15.268–21.468, and second reflection (shoulder) is
again broad but weak in 2y range 208–43.758.
D’Orazio et al. noticed the reflections in these
regions for ether based elastomeric PU and such
results suggested an amorphous structure.46–48

Microcrystalline parameters like nanocrystal size
(<N>) and lattice strain (g in %) for GG-filled PU/
PAN IPNs were calculated using three different
asymmetric distribution functions and the results are
given in Table I. To ascertain the most suitable
asymmetric distribution, fitness test was made using
line profile simulation from the peak of the reflection
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to the base line of it. Experimental and simulated X-
ray profiles for GG-filled PU/PAN composites calcu-
lated by using all the distribution functions and
specimen profiles for 10% and 30% GG-filled PU/
PAN IPNs for both main and shoulder peaks are
shown in Figure 2(a–d), respectively. It is evident from
these figures that there is a good agreement between

experimental and theoretically calculated X-ray data
for exponential distribution function. In all the cases
the goodness of the fit was less than 15%. From Table I,
it is also evident that the exponential distribution has
less standard deviation (d) compared to other distribu-
tion functions and hence, we have preferred the corre-
sponding results for further interpretation.

Figure 1 X-ray profile of (a) 0%, (b) 5%, (c) 10%, and (d) 30% GG-filled PU/PAN composites.

TABLE I
Microstructural Parameters Obtained from X-ray Pattern for PU/PAN (50/50) Samples with Different Amount of GG by
Employing Exponential (Exp), Reinhold (Rein), and Lognormal (Log) Distribution Functions Before Biodegradation

% of PS 2y (8)

Crystallite area in nm <N> d (%) g (%) a

d in nmExp Rein Log Exp Rein Exp Rein Log Exp Rein Log Exp Rein

0 15.26 0.951 0.8556 0.79.18 1.75 1.68 0.06 0.06 0.06 0.4 0.5 0.5 3.16 3.90 0.581
20.0 2.11 2.10 0.03 0.03 0.04 0.5 0.5 0.5 1.44 2.13 0.443

5 21.46 0.7771 0.7729 0.6573 2.57 2.55 0.02 0.03 0.04 0.5 0.5 0.5 1.24 1.80 0.414
43.75 3.53 3.54 0.03 0.03 0.04 0.5 0.5 0.5 1.78 2.98 0.207

10 21.2 0.4881 0.4881 0.3928 2.71 2.71 0.03 0.03 0.04 0.7 0.7 0.5 2.97 4.39 0.419
37.42 1.79 1.79 0.06 0.06 0.08 0.7 0.7 0.5 8.35 4.80 0.24

30 21.19 0.5737 0.5737 0.4745 2.71 2.71 0.03 0.03 0.04 0.7 0.5 0.7 3.73 5.45 0.419
40.0 2.24 2.24 0.03 0.03 0.04 0.6 0.5 0.5 3.95 7.51 0.225
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The surface weighted nanocrystal size (Ds)
obtained by exponential distribution as a function of
weight percent of GG is shown in Figure 3. It was
observed that the incorporation of GG into PU/PAN
matrix was found to increase the surface weighted
crystal size of the main peak, whereas the shoulder
peak Ds value reduced upto 10% GG-filled systems.
Further increase in GG content was found to
increase the value of Ds. The variation in Ds is
related to the values of crystal size [<N>] and lattice
strain (g), and indicate the variation in the behavior
of GG filled PU/PAN IPNs due to change in struc-
ture and morphology with compositions.

The nanocrystallite area obtained from all the dis-
tribution functions for all the samples were com-
pared with the corresponding tensile strength and is
shown in Figure 4(a–c). From the figures it is evident
that these two are reciprocal to each other.

Incorporation of GG into PU/PAN matrix is found
to decrease the interplanar distance (d) as evident
from Figure 5. But, an increase in GG content is

Figure 2 Experimental and simulated X-ray profiles for (a) 0% (b) 5%, (c) 10%, and (d) 30% GG-filled PU/PAN compo-
sites before biodegredation using Exponential, Reinhold, and Lognormal distribution functions.

Figure 3 Surface weighted crystal size (Ds) as a function
of GG for main and shoulder peaks obtained from expo-
nential distribution function for PU/PAN/GG.

2766 KUMAR ET AL.

Journal of Applied Polymer Science DOI 10.1002/app



found to increase the interplanar distance corre-
sponding to both the 2y values. However, interpla-
nar distance of main peak was found to be lesser
than corresponding value of shoulder peak, but the
variation is same. This implies that there is change
in the structure of the composite system with
increase in GG content.

WAXS after biodegradation

The X-ray profiles of selected GG filled PU/PAN
IPNs after biodegradation are shown in Figure 6. Ta-
ble II contains the reflection maxima with corre-
sponding spacing along with the other microstruc-
tural parameters generated using three asymmetric
distribution functions.

The scattering reflections of all the specimens
showed two broad reflections of variable intensity,
the first major peak in the 2y range of 218–21.558 and
the second shoulder reflection in 2y range of 408–
48.088. Shift in the 2y values of both the peaks were

Figure 4 Tensile strength and crystallite area obtained by (a) Exponential, (b) Reinhold, and (c) Lognormal as a function
of weight percent of GG of the composite.

Figure 5 Change in interplanar distance as a function
of weight percent of GG for the composite before biode-
gradation.
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observed as compared to 2y values that were there
before biodegradation. A notable change is observed
in the intensity of reflections. The increase in GG
content was found to decrease the intensity of first
reflection, though the change is not systematic.
The decrease in intensity of broad peak indicates

the change in structure of material caused by
biodegradation.

Experimental and simulated X-ray profiles were
obtained for PU/PAN/GG composites using all the
distribution functions and representative X-ray pro-
files for 5 and 30% GG-filled PU/PAN systems for

Figure 6 X-ray profiles of (a) 0%, (b) 5%, (c) 10%, and (d) 30% GG-filled PU/PAN composites after biodegradation.

TABLE II
Microstructural Parameters for PU/PAN (50/50) Samples with Different Amount of GG After Biodegradation by

Employing Exponential (Exp), Reinhold (Rein), and Lognormal (Log) Distribution Functions

% of PS 2y (8)

Crystallite area in nm <N> d (%) g (%) a

d in nmExp Rein Log Exp Rein Exp Rein Log Exp Rein Log Exp Rein

0 21.55 0.4756 0.4761 0.4073 2.70 2.70 0.03 0.03 0.04 1 0.4 0.4 1.47 2.24 0.412
40.00 1.90 1.90 0.02 0.03 0.03 0.5 1.3 1.5 7.50 1.00 0.225

5 21.53 0.9204 0.9225 0.7805 2.79 2.8 0.04 0.03 0.05 0.5 0.5 0.5 4.34 3.89 0.413
42.78 3.78 3.78 0.01 0.02 0.03 0.5 0.5 0.5 7.45 3.78 0.211

10 21.32 0.5275 0.525 0.4596 2.69 2.69 0.03 0.03 0.05 0.5 0.3 0.3 2.31 3.32 0.417
40.00 2.09 2.08 0.03 0.04 0.05 0.5 0.3 0.3 1.20 1.72 0.225

30 21.00 1.4831 1.4831 1.2202 2.20 2.20 0.02 0.02 0.05 0.5 0.5 0.5 4.77 9.13 0.423
48.08 8.42 8.42 0.02 0.02 0.03 0.1 0.1 0.1 9.16 9.83 0.189
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both main and shoulder peaks are shown in Figure
7(a–d). It is evident from these figures that there is a
good agreement between experimental and theoreti-
cally calculated X-ray data for exponential distribu-
tion function. From Table II, it is also evident that
the exponential distribution has less standard devia-
tion (d) compared to other distribution functions and
hence, we have preferred the corresponding results
for further interpretation.

The variation of surface weighted nanocrystallite
size (Ds) with weight percent of GG is shown in Fig-
ure 8 for main and shoulder peak. The surface
weighted crystallite size Ds was found to decrease
for main peak whereas for shoulder peak is
increased with the increase in GG content. This phe-
nomenon is quite reversal for specimens before bio-
degradation. The crystallite area after biodegradation
(Table II) is found to increase with increase in GG
content whereas before biodegradation, it was found
to decrease (Table I) with increase in GG. This result

Figure 7 Experimental and simulated line profiles for (a,b) 5% and (c,d) for 30% GG-filled PU/PAN composites after bio-
degradation using Exponential, Reinhold, and Lognormal distribution functions.

Figure 8 Surface weighted crystal size for main and
shoulder peak obtained from Exponential distribution
function after biodegradation.
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suggests that there is a change in structural behavior
of material because of biodegradation.

It is evident from Figure 9 that there is decrease in
intensity of peaks, with the increase in weight per-
cent of GG. It was observed that the increase in GG
was found to increase the biodegradation and that
the amorphous component of the composite system
undergoes biodegradation.49–53 In our earlier com-
munication, we have found that the fractional free
volume measured by positron annihilation lifetime
spectroscopy (PALS) decreased after biodegrada-
tion.53 This implies the degradation of easily vulner-
able soft and amorphous segment. This supports the
molecular rearrangement due to degradation of
amorphous component of composites in the presence
of Aspergillus niger.

The change in nanocrystallite area of the compos-
ite is very interesting. The crystallite area of PU/
PAN matrix was found to decrease after biodegrada-
tion. For GG-filled PU/PAN, the nanocrystallite area
was found to be large for biodegraded specimens
compared to specimens before biodegradation. This

could be due to degradation of amorphous com-
ponent and realignment of molecules after biode-
gradation. The increase in nanocrystallite area also

Figure 9 X-ray profiles of (a) 0%, (b) 5%, (c) 10%, and (d) 30% GG-filled PU/PAN composites before and after biodegra-
dation in Aspergillus niger.

Figure 10 Variation of interplanar distance after biodegra-
dation as a function of weight percent of GG of composite.
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supports the decrease in fractional free volume
observed for the same system.53 This change will
also affect the rate of biodegradation. It was
observed that the rate biodegradation for 30% GG
filled composite is less compared to other compo-
sites. This could be due to increase in inter and
intramolecular hydrogen bonding between the com-
ponents of composite.

From Figure 10, it is observed that the interplanar
distance is found to increase drastically with the
increase in GG content after biodegradation, whereas
the trend is quite reverse before biodegradation.
This, once again confirms the change in structure of
composite system. Biodegradation of polymer com-
posites probably destabilizes the crystalline network
defects and brings about the narrowing of reflec-
tions. As a result, the calculated nanocrystallite size
decreases and interplanar distance increases.54

CONCLUSIONS

Nanocrystallite size of PU/PAN matrix is reduced
after biodegradation but, the addition of GG, exhib-
its different X ray pattern. The nanocrystallite area
increases for PU/PAN/GG after biodegradation and
the percentage of increase in nanocrystallite area
increases with the increase in GG content of the sam-
ples. This may hamper biodegradation process since
the materials will have relatively large number of
inter and intra weak hydrogen bonds in the polymer
network. The process of biodegradation of GG-filled
IPN gets slower because of increase in nanocrystal-
lite area.

Authors wish to thank Dr. T. N. Guru Row and Ms. Gee-
tha S. Kini of Department of Solid State and Structural
Chemistry, Indian Institute of Science, Bangalore, for XRD.
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